안녕하세요! 공돌이 인생무상입니다. 이번 포스팅은 Beam (보)에 대해 간략히 알아보려합니다. 흔히들 보라고 하는 구조물에 하중이 작용할 경우 어떻게 접근하는지 알아봅시다.
정정보란?
일단 보 부터 먼저 말을 해야겠네요. 보란 수직 하중에 대해 버텨주는 구조물을 말해요. 보통 이런 경우를 보라 합니다.
여기서 F는 하중으로 단위는 N 이고, w는 길이당 하중으로 N/m입니다.
그럼 정정보라는건 뭘까요?
위 세가지 모양의 보를 정정보라고 합니다. 정정이라는 뜻은 보에 작용하는 힘과 모멘트의 평형 방정식을 이용하면 반력 지점에 작용하는 힘과 모멘트를 구할 수 있다는 뜻입니다. 저 세 가지 형태에서는 두 방정식만 가지고도 반력이 작용하는 지점의 반력을 정확히 구할 수 있다는 뜻이기도 합니다.
단순보와 돌출보에서 오른쪽 반력 지점 ( 세모 아래 동그란게 세 개 있는거랑 동그라미 )는 y 축 반력은 존재하지만 x 축 반력은 존재하지 않는 반력 지점이라는 뜻입니다. 정확한 명칭은 롤러구요. 더 자세한 건 여러분들이 가지고 있는 정역학 책에 나와있지요.
그럼 정정보 중에서 단순보에 단순 하중이 작용할 경우 어떻게 접근하는지 알아보도록 할까요?
단순보에 단순 하중이 작용할 경우
이 부분만 잘 이해한다면 앞으로의 문제들을 쉽게 해결할 수 있지용
정정보 문제에서 가장 중요한 것은
1. 평형 방정식을 세우고 반력을 구한 후
2. 반력을 가지고 전단력 선도 (SFD)와 굽힘 모멘트 선도 (BMD)를 그릴 함수를 만드는 것입니다.
이렇게 힘의 평형 방정식과 모멘트 평형 방정식을 풀어서 반력 지점의 반력을 구하는 것입니다. 이 반력들은 꼭 필요한 값들입니다. 왜? 이 반력을 알아야 함수 시작점이나 함수 값을 알 수 있기 때문이죠!
반력만 구하면 재미 없겠지요? 그 다음 과정이 가장 중요하다고 생각합니다. 왜냐구요?
이 다음 과정에 나오는 SFD/BMD ( 전단력 선도/ 굽힘 모멘트 선도 )를 작성하는 방법을 완전히 이해하고 있어야 재료역학을 배울 때 편안하게 공부할 수 있어요. 이걸 이용해서 더 어려운 문제들을 풀어내는게 있거든요.
아마도 V, M, x 때문에 머리가 좀 아프실 것으로 생각됩니다. V는 전단력 함수, M은 모멘트의 함수값을 이야기합니다. x는 0과 L( 보 전체의 길이 ) 사이에 있는 실수입니다. 아마 x 가 윗 장에서는 0~1/2 L사이에 있는거랑 1/2 L과 L 사이에 있는 두 가지로 나뉘어 푼 이유가 궁금하실 텐데요. 그건 1/2L 에서 불연속적인 함수값의 변화가 있기 때문입니다. 이 지점에 무슨 일이 생기지요? 이 지점에서 F라는 힘이 아래로 작용하고 있기 때문에 불연속적 변화가 생긴거고, 그래서 불연속적 변화가 생기기 전과 후에 함수값이 어떻게 나오는지 분석하고 두 가지를 통합해서 함수로 뽑아낸 계산과정입니다.
이 두 선도를 비교해보면... 눈치 빠르신 분들은 바로 눈치채실텐데요. 두 함수의 관계는 아래 식을 만족합니다.
이 수식이 의미하는 바는, 굽힘 모멘트를 미분하면 전단력 함수가 나온다는 뜻이지요. 요 관계도 나중에 요긴하게 써먹을 수 있습니다. 재료역학에서요.
마무리
일단 단순보에서 간단한 케이스 하나를 가지고 설명한 것 같네요. 하지만, 아직 안 끝났지요. 나머지 정정보 두 가지 케이스랑 여러가지 하중이 작용하는 경우 어떻게 대처해야할지에 대해서도 포스팅해봐야겠지요? 그래야 재밌으니까요 허허허...
'기계공학- 일반기계기사 > 정역학 및 재료역학' 카테고리의 다른 글
[정역학] Beam(보)문제 해결편 - 정정보의 어려운 단위 하중(삼각형) 에 대한 대응법 (0) | 2024.06.07 |
---|---|
[정역학] Beam(보)문제 해결편 - 정정보의 간단한 단위 하중 에 대한 대응법 (0) | 2024.04.13 |
일반기계기사 - 트러스 구조물이 나올 경우 (간단한 문제의 경우) (0) | 2021.03.06 |
단면 2차 모멘트에서 파생된 계산법들을 재밌게 풀어보자 (1) | 2021.03.01 |
일반기계기사, 재료역학, 단면 2차 모멘트에 대한 이야기 (0) | 2021.02.27 |